Summer School 2016
Demography of Health and Education

Health Expectancy Research
based on
Nihon University Longitudinal Study of Aging

Yasuhiko Saito
Nihon University
Outline of talk

• Health expectancy: overview
 – Concept of health expectancy
 – Concept of health
 – Measures of health expectancy
 – Methods of computing health expectancy

• Nihon University Longitudinal Study of Aging

• Prevalence based example

• Prevalence based example with panel data

• Incidence based example

• Incidence based example with more covariates
Health Expectancy: Overview

The methods and materials of health expectancy

Yasuhiko Saitoa,*, Jean-Marie Robineb and Eileen M. Crimminsc

aNihon University, Tokyo, Japan
bINSERM, Montpellier, France
cUniversity of Southern California, Los Angeles, USA

http://content.iospress.com/articles/statistical-journal-of-the-iaos/sji00840
Health Expectancy in Policy

- EU: EuroStat--Healthy life years as indicator of population health
- EU: Target for a two-year increase in healthy life years at birth from 2010 to 2020
- USA: First appeared in "Healthy People 2000" as one of priorities and continued in "Healthy People 2010" and "Healthy People 2020"
- Japan: First priority to increase health expectancy for the next decades in the health promotion guideline released in 2012 by the Ministry of Health Labour and Welfare
Health Expectancy: Definition

Life Expectancy = Healthy Life Expectancy + Unhealthy Life Expectancy (Health Expectancy)

86 Years of Life = 82 Years of Healthy Years + 4 Years of Unhealthy Years

- 4 years of unhealthy years do not mean the last 4 consecutive years of life.
- Health states can be more than 2 categories
Definition of Health

• WHO: Health is a state of complete physical, mental and social well-being and not merely the absence of disease or infirmity.

• Many measures of health expectancy
Health Related Classifications

• ICD: International Classification of Disease
 – 10th edition

• ICIDH: International Classification of Impairments, Disabilities, and Handicaps
 – Second edition of ICIDH was endorsed at the 54th World Health Assembly with the title International Classification of Functioning, Disability and Health (in short ICF) in May 2001
ICF

- The ICF puts the notions of ‘health’ and ‘disability’ in a new light. It acknowledges that every human being can experience a decrement in health and thereby experience some degree of disability. Disability is not something that only happens to a minority of humanity. The ICF thus ‘mainstreams’ the experience of disability and recognizes it as a universal human experience. By shifting the focus from cause to impact it places all health conditions on an equal footing allowing them to be compared using a common metric – the ruler of health and disability. Furthermore ICF takes into account the social aspects of disability and does not see disability only as a 'medical' or 'biological' dysfunction. By including Contextual Factors, in which environmental factors are listed ICF allows to records the impact of the environment on the person's functioning.
5 Dimensions of Physical/Mental Health

- Healthy
- Diseases, Conditions, and Impairments:
 - stroke, dementia, depression, pain, amputated leg
- Functioning loss:
 - walking, hearing, vision
- Disability:
 - ability to perform personal activities, independent living, work
- Death
Health States and Health Transitions

- Healthy
- Functional loss
- Disability
- Death
- Diseases, conditions, impairments
- Social well-being
- Self-rated health

Factors
Risk factors
Risk factors
Factors
Measures of Health Expectancy

- disease prevalence
- bed-disability
- self-rated health
- Activity of Daily Living (ADL)
- Instrumental Activity of Daily Living (IADL)
- limitation of activities (disability)
- Global Activity Limitation Index (GALI)
- Washington Group's Disability Questions
Self-Rated Health

• self reported subjective measure
• age range: 20+ ?
• Question wording: "Would you say your health in general is"
• "excellent, very good, good, fair or poor" (English speaking countries and Nordic European countries)
• "very good, good, fair, bad or very bad" (EU following WHO recommendation)
ADLs and IADLs

• self reported but little more objective
• age range: 50+ ?
• Activities of Daily Living
 – bathing, eating, dressing, walking, toileting
• Instrumental Activities of Daily Living
 – using telephone, managing money, shopping
• response categories: yes/no, some/lot/unable
• Wording: do you have difficulty, can you do, do you need help (vary by culture: eating)
Limitation of Activities

• self reported measure
• age range: ?
• activities can vary by age
 – playing, go to school, work, taking care of oneself
• question used to compute HE in the US and Japan
Global Activity Limitation Index (GALI)

- self reported measure
- based on ICF and measures participation
- age range: 15+ ? (working for younger ages)
- Wording: "For the past 6 months at least, to what extent have you been limited because of a health problem in activities people usually do?"
- Response categories: "not limited" "limited but not severely" "severely limited"
Washington Group's Disability Questions

• self reported measure
• based on ICF and measures functioning
• age range: 5+ ? (working on younger ages)
• short set: 6 questions for census
 – seeing, hearing, walking, cognition, self-care, communication
• long set: for health interview survey, etc.
Health Expectancy & Measures Used

“health states in question”

- self-rated health \rightarrow healthy life expectancy
- specific disease \rightarrow stroke-free life expectancy
- impairments \rightarrow impairments-free life expectancy
- functional limitation \rightarrow disability-free life expectancy
- ADL limitation \rightarrow active life expectancy
- dementia \rightarrow dementia-free life expectancy
Acronyms of Summary Measure

• Health Expectancy
 – **DFLE**: Disability-Free Life Expectancy
 – **ALE**: Active Life Expectancy

• George W. Torrance (1976, 1987)
 – **QALY**: Quality-Adjusted Life Year

• GBD
 – **DALY**: Disability-Adjusted Life Year
 – **HALE**: Health-Adjusted Life Expectancy
 – **DALE**: Disability-Adjusted Life Expectancy
Data Sources

• Censuses

• Surveys (cross-section, repeated cross-section, panel, longitudinal)

• Surveillance data (INDEPTH)

• Administrative data (Denmark, LTCI in Japan)

• Registration data (Cancer)
Methods of Computing Health Expectancy

- Prevalence-Based (Sullivan) Method (1971)
- Double Decrement Life Table Method (1983)
- Multistate Life Table Method (1989)
- Grade of Membership (GoM) Approach (1993)
 - DALY, DALE, HALE
- Bayesian Approach (2003)
Sullivan Method

Daniel F. Sullivan

1966: “Conceptual Problems in Developing an Index of Health”

1971: “A Single Index of Mortality and Mobidity”

Data: Life Table, Prevalence Rates, Institutionalization Rates

• easy to calculate and collect data

• applied by many countries to compute health expectancy
Depiction of Sullivan Method
Depiction of Sullivan Method
Depiction of Sullivan Method

Healthy

Unhealthy

Institutionalized
Sullivan Method

\[e_x \text{ (healthy)} = \frac{T_x \text{ (healthy)}}{l_x} \]
\[e_x \text{ (institutionalized)} = \frac{T_x \text{ (institutionalized)}}{l_x} \]
\[e_x \text{ (unhealthy)} = \frac{T_x \text{ (unhealthy)}}{l_x} \]

\[e_x = e_x \text{ (healthy)} + e_x \text{ (institutionalized)} + e_x \text{ (unhealthy)} \]
Multistate Life Table Method

Method existed but applied to Health Expectancy Research by

Rogers A., Rogers R., Branch (1989)
Rogers R., Rogers A., Belanger (1989)
Rogers A., Rogers R., Belanger (1990)
Multistate Life Table Method

- Healthy
- Unhealthy
- Dead
Multistate Life Table Method

• Population-Based Method
 – only age is a variable
 – only one radix but need to distribute it by healthy status at the beginning of the age range

• Status-Based Method
 – age and health status are variables
 – can compute life table as many as the number of health status employed
Nihon University
Longitudinal Study of Aging

Purpose

• Investigate levels of and changes in health status of Japanese elderly
• Investigate factors affecting health status and changes in health status over time
• Observe effect of long-term care insurance program on attitude toward long-term care
• Collect comparable data to other longitudinal data for cross-national comparisons
NUJLSOA -- Surveys Conducted

<table>
<thead>
<tr>
<th>Wave</th>
<th>Main</th>
<th>Follow-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Nov. 1999</td>
<td>Mar. 2000</td>
</tr>
<tr>
<td>2</td>
<td>Nov. 2001</td>
<td>Dec. 2001</td>
</tr>
<tr>
<td>3</td>
<td>Nov. 2003</td>
<td>Dec. 2003</td>
</tr>
<tr>
<td>4</td>
<td>Nov. 2006</td>
<td>Dec. 2006</td>
</tr>
<tr>
<td>5</td>
<td>Mar.-Apr 2009</td>
<td>June 2009</td>
</tr>
</tbody>
</table>
Survey Design

• For Wave 1
 – Nationally representative sample of 65 and over
 – Initial sample of 6,700 persons selected by Multi-stage stratified random sampling
 – Oversampled those aged 75 and over by factor of 2
 – In-person interview survey using structured survey questionnaire (proxy allowed)

• For later waves
 – Sample refreshing - New sample persons for those age 65 and 66 were added at waves 2 and 3
 – No sample refreshing for waves 4 and 5
Sample Size

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>6700</td>
<td>4997</td>
<td>900</td>
<td>5242</td>
<td>900</td>
<td>4744</td>
<td>3321</td>
</tr>
<tr>
<td>Resp</td>
<td>4997</td>
<td>3992</td>
<td>631</td>
<td>3935</td>
<td>572</td>
<td>3414</td>
<td>2583</td>
</tr>
<tr>
<td></td>
<td>74.6%</td>
<td>79.9%</td>
<td>70.1%</td>
<td>75.1%</td>
<td>63.6%</td>
<td>72.0%</td>
<td>77.8%</td>
</tr>
<tr>
<td>Dead</td>
<td>327</td>
<td>6%</td>
<td>380</td>
<td>7.2%</td>
<td>477</td>
<td>10.1%</td>
<td>9.4%</td>
</tr>
<tr>
<td></td>
<td>6%</td>
<td></td>
<td>7.2%</td>
<td></td>
<td>10.1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No Resp</td>
<td>1703</td>
<td>678</td>
<td>269</td>
<td>927</td>
<td>853</td>
<td>426</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25.4%</td>
<td>13.6%</td>
<td>29.9%</td>
<td>17.7%</td>
<td>18.0%</td>
<td>12.8%</td>
<td></td>
</tr>
</tbody>
</table>
Question Items in Wave 1

- Demographic attributes
- Family Structure
- Socioeconomic status
- Intergenerational exchange
- Information on Surviving Children’s family
- Health behaviors
- Chronic conditions
- Physical functioning (ADL, IADL, NAGI)
- Mental Health
- Vision & Hearing
- Dental Health
- Health Care Utilization
- Housing
- Information Technology
- Living Arrangement
Question Items in Wave 2

Additional Feature
Decedent Interview

• Date of death
• Cause of death
• Place of death
• Medical expenses in the last 6 months prior to death
• Relationship of main caregiver

Additional Questions

• Long-term care insurance system
• CIDI
Question Items in Wave 3

Additional Feature
• survey of survival status of those who did not respond at Wave 1

Additional Questions
• Sleeping disorders
• Restless Leg Syndrome
• Pain
• Stress
Question Items in Wave 4

Additional Feature
• Blood Pressure / Pulse
 – Omron HEM-762
• Anthropometric Measures
 – Waist
 – Leg length
 – Knee height
• Grip strength
 – Tanita

Additional Questions
• Cognitive functioning
 – Immediate word recall
 – Delayed word recall
 – Serial 7
• Anchoring Vignettes
• Health utilization
Question Items in Wave 5

Additional Feature
• Blood Pressure / Pulse
 – Omron HEM-762
• Anthropometric Measures
 – Waist
 – Height
 – Weight
• Grip strength
 – Tanita

Additional Questions
• Cognitive functioning
 – Immediate word recall
 – Delayed word recall
 – Serial 7
• Anchoring Vignettes
• Health utilization
Life expectancy with depression among older adults in Japan & Taiwan: An international comparison

Yasuhiko Saito
Nihon University, Tokyo, Japan

Hui-Sheng Lin
Chuang-Shen Medical University, Taichung, Taiwan, R.O.C.

Kristen Suthers
U.S. National Institute on Aging
Research Questions

• How does the prevalence of depression among older adults in Japan & Taiwan differ?
• Are there differences in the length of life with depression among older adults in Japan and Taiwan?
Data

- JAPAN: Nihon University Longitudinal Study of Aging (NUJLSOA)
 - Data for this analysis collected: 1999
 - N=4,361
 - % Female= 59%
Data

- TAIWAN: Survey of Health and Living Status of the Middle Aged and the Elderly in Taiwan (SHLSEs) conducted jointly by the Taiwan Provincial Institute of Family Planning (currently the Bureau of Health Promotion, the Executive Yuan, Republic of China) and both Population Studies Center and the Institute of Gerontology at the University of Michigan
 - Data for this analysis collected: 1999
 - N=1,210
 - % Female=54%
Methods

• To measure depression:
 – CES-D: 10 items common to both surveys
 – A cutoff score of 10 out of a score range of 0-30 was used to define depression in each country.
Methods

• Sullivan Method
 – How: Combines the prevalence of cognitive impairment with age-specific mortality rates.
 – Result: Partitions the total life expectancy into years with and without cognitive impairment.
Prevalence of depression in Japan & Taiwan among adults aged 70+ by age & sex.

![Bar chart showing prevalence of depression by age group and gender for Taiwanese and Japanese populations.](chart.png)
Length of life with and without depression by age group and country: MALES

- **Life Without Depression**
- **Life With Depression**

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Japan (JP)</th>
<th>Taiwan (TW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>70-74</td>
<td>16</td>
<td>14</td>
</tr>
<tr>
<td>75-79</td>
<td>15</td>
<td>12</td>
</tr>
<tr>
<td>80-84</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>85-89</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>90+</td>
<td>5</td>
<td>4</td>
</tr>
</tbody>
</table>
Length of life with and without depression by age group and country: FEMALES

Life without Depression Life with Depression

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>70-74</td>
<td>19</td>
<td>6</td>
<td>19</td>
<td>6</td>
<td>19</td>
<td>6</td>
<td>19</td>
<td>6</td>
<td>19</td>
<td>6</td>
</tr>
<tr>
<td>75-79</td>
<td>18</td>
<td>5</td>
<td>18</td>
<td>5</td>
<td>18</td>
<td>5</td>
<td>18</td>
<td>5</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>80-84</td>
<td>16</td>
<td>4</td>
<td>16</td>
<td>4</td>
<td>16</td>
<td>4</td>
<td>16</td>
<td>4</td>
<td>16</td>
<td>4</td>
</tr>
<tr>
<td>85-89</td>
<td>14</td>
<td>3</td>
<td>14</td>
<td>3</td>
<td>14</td>
<td>3</td>
<td>14</td>
<td>3</td>
<td>14</td>
<td>3</td>
</tr>
<tr>
<td>90+</td>
<td>12</td>
<td>2</td>
<td>12</td>
<td>2</td>
<td>12</td>
<td>2</td>
<td>12</td>
<td>2</td>
<td>12</td>
<td>2</td>
</tr>
</tbody>
</table>
Proportion of life with depression by age, sex, & country
Summary

• Elderly Japanese have lower prevalence of depression for males and females.
• In each country, females have higher prevalence of depression except for females 90+.
• For females: Life with depression varies from 0.2-0.4 years for Taiwanese, and 0.6-0.8 in Japanese.
• For males: Life with depression varies from 1.2-2.0 years for Taiwanese, and from 0.2-0.8 years for Japanese.
• Taiwanese women have greatest burden ~ length of life with depression relative to total life expectancy is the highest.
A Comparison of Educational Differences on Physical Health, Mortality and Healthy Life Expectancy in Japan and the United States

Chi-Tsun Chiu, Academia Sinica, Taiwan
Mark Hayward, University of Texas at Austin, USA
Yasuhiko Saito, Nihon University, Japan

Journal of Aging and Health, forthcoming
More education is associated with better health

• Compared to groups with low levels of education, well-educated groups have
 – Lower prevalence of most major chronic conditions, impairments, functional problems and disability
 – Lower mortality rates leading to a longer life expectancy
 – Lower disability rates leading to a longer healthy life expectancy
Growing interest in how education is associated with health/mortality

- Conceptually, as education increases, individuals not only have access to more of a particular type of resource that stems from education, but they also have access to more types of resources.

- Education thus allows the maximization of life/health chances stemming both from greater levels and numbers of resources.
Objectives

• To examine the educational gradient of health and mortality between two wealthy and long-lived populations
 – Japan
 • a wealthy eastern country with the world’s leading life expectancy
 – the United States
 • a wealthy western country with a life expectancy that lags behind Japan’s
• Nihon University Japanese Longitudinal Study of Aging (NUJLSOA)
 – Nationally representative sample of 65+ in Japan
 – N=4,997 (baseline)
 – Refreshed in 2001 and 2003 for those aged 65 and 66
 – Oversampled for age 75+
 – Age 65+
• Health and Retirement Study (HRS)
 – Representative of the U.S. non-institutional population ages 50+ years and their spouses
 – A biennial survey beginning in 1992 (Rand file)
 – The study makes use of 7 waves
 – Age 65+
Measures

• Mortality
 – NUJLSOA
 • Mortality is identified at follow-up from family members, neighbor, etc.
 – HRS
 • Mortality is identified by
 – NDI (National Death Index), and
 – through tracking of respondents
Measures

• Functional limitation
 – Restrictions in an individual's physiological ability to perform fundamental physical actions
 – Indicate overall abilities of the body to do purposeful work
 – Less sensitive to social roles and environmental demands
 – 6 NAGI items
 • sitting for about two hours; climbing one flight of stairs without resting; stooping, kneeling, or crouching; reaching or extending your arms above shoulder level; lifting or carrying weights over 10 pounds, like a heavy bag of groceries; picking up a dime from a table.
Measures

• Disability
 – Gap between personal capability and environmental demands
 • Disability can be mitigated at either side
 – Outcome of functional limitations and environmental demands in the disablement process
 – Refers to whether a person can live independently or provide self care
 – Measured by difficulties with activities of daily living (ADLs) in this study and ADLs are necessary for survival
 – 6 activities of daily living (ADLs: dressing, bathing, eating, bedding, walking and toileting)
• Ailments (chronic conditions)
 – Different chronic conditions can impact the disablement process in different ways
 – 5 major chronic conditions
 • Diabetes, heart problems, stroke, cancer, and chronic lung diseases
 – Not include hypertension and arthritis
Measures

- Education
 - Measures in the survey
 - Years of formal schooling
 - Levels of educational attainment
 - Japan: 0-9, 10-11, 12+ years
 - High school graduates and high school dropouts
 - occupations, income, health behaviors, and health.
 - USA: 0-11, 12, 13+ years
Healthy/Unhealthy

• Unhealthy:
 – Have difficulty performing any one of the 6 ADLs
 – Have difficulty performing any one of the 6 NAGI items
 – Ever have any one of the 5 major chronic conditions

• Healthy
 – Have no difficulty performing all 6 ADLs
 – Have no difficulty performing all 6 NAGI items
 – Never have all 5 major chronic conditions
Methods

- All-cause mortality rates
 - Gompertz hazard model
 - Age and education as covariates
 - Stratify by sex for each country

\[
\ln m(t, Edu) = \beta_0 + \beta_1 \cdot t + \beta_2 \cdot Edu_{\text{year}}
\]

\[
\ln m(t, Edu) = \beta_0 + \beta_1 \cdot t + \beta_2 \cdot Edu_{\text{Middle}} + \beta_3 \cdot Edu_{\text{High}}
\]

\[
m(t, Edu) = \lim_{\Delta t \to 0} \frac{\text{Pr} \left(t \leq T \leq t + \Delta t | T \geq t, Edu \right)}{\Delta t}
\]
Methods

• Prevalence probability
 – Logistic regression
 • Age and education as covariates
 • Stratify by sex for each country

\[
\ln\left(\frac{\pi}{1-\pi}\right) = \beta_0 + \beta_1 \cdot t + \beta_2 \cdot t^2 + \beta_3 \cdot Edu_year
\]

\[
\ln\left(\frac{\pi}{1-\pi}\right) = \beta_0 + \beta_1 \cdot t + \beta_2 \cdot t^2 + \beta_3 \cdot Edu_Middle + \beta_4 \cdot Edu_High
\]
Methods

• Prevalence-based life tables
 – Sullivan’s method
 – Divides total life expectancy into the different health states based on the age-specific prevalence of healthy/unhealthy states
 – Reflects the current health structure of a real population adjusted for age and mortality levels
 – Not using incidence-based life tables
Methods

• Bootstrap technique (n=300)
 – A data resampling method which is used to derive variance estimates when analytic methods are unavailable.
 – Bootstrapping generates repeated calculations of the life table functions by randomly drawing a series of bootstrap samples from the analytic samples.
 – To obtain standard errors for the life table functions.
<table>
<thead>
<tr>
<th>Country</th>
<th>Education</th>
<th>Men</th>
<th>%</th>
<th>Women</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Japan</td>
<td>Low (0-9)</td>
<td>1,572</td>
<td>55.5</td>
<td>2,290</td>
<td>61.6</td>
</tr>
<tr>
<td></td>
<td>Middle (10-11)</td>
<td>373</td>
<td>13.4</td>
<td>698</td>
<td>20.7</td>
</tr>
<tr>
<td></td>
<td>High (12+)</td>
<td>731</td>
<td>31.0</td>
<td>507</td>
<td>17.7</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>2,676</td>
<td>100.0</td>
<td>3,495</td>
<td>100.0</td>
</tr>
<tr>
<td>USA</td>
<td>Low (0-11)</td>
<td>2,814</td>
<td>29.5</td>
<td>3,632</td>
<td>29.4</td>
</tr>
<tr>
<td></td>
<td>Middle (12)</td>
<td>2,530</td>
<td>30.0</td>
<td>3,987</td>
<td>37.1</td>
</tr>
<tr>
<td></td>
<td>High (13+)</td>
<td>3,242</td>
<td>40.5</td>
<td>3,483</td>
<td>33.6</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>8,586</td>
<td>100.0</td>
<td>11,102</td>
<td>100.0</td>
</tr>
</tbody>
</table>
Regression results – Educ coef

<table>
<thead>
<tr>
<th></th>
<th>Mortality</th>
<th>ADL</th>
<th>FL</th>
<th>Ailments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td>Japan</td>
<td>USA</td>
<td>Japan</td>
<td>USA</td>
</tr>
<tr>
<td>Male</td>
<td>Years</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.04*</td>
<td>-0.04*</td>
<td>-0.09*</td>
<td>-0.09*</td>
</tr>
<tr>
<td></td>
<td>(ref=Low)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Middle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.03</td>
<td>-0.16*</td>
<td>0.13</td>
<td>-0.05*</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.48*</td>
<td>-0.40*</td>
<td>-0.38*</td>
<td>-0.31*</td>
</tr>
<tr>
<td>Female</td>
<td>Years</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.01</td>
<td>-0.04*</td>
<td>-0.09*</td>
<td>-0.09*</td>
</tr>
<tr>
<td></td>
<td>(ref=Low)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Middle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.17</td>
<td>-0.23*</td>
<td>-0.12*</td>
<td>-0.11*</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.44*</td>
<td>-0.36*</td>
<td>-0.17*</td>
<td>-0.30*</td>
</tr>
</tbody>
</table>

Note: intercept and age terms not shown here
<table>
<thead>
<tr>
<th></th>
<th>Educ</th>
<th>TLE</th>
<th>ADL</th>
<th>FL</th>
<th>Ailments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>HLE</td>
<td>ULE % (hle/tle)</td>
<td>HLE</td>
</tr>
<tr>
<td>Japan</td>
<td>Low (0-9)</td>
<td>18.8 (18.0-19.6)</td>
<td>16.4 (15.7-17.2)</td>
<td>2.4 (2.1-2.6)</td>
<td>87.5 (86.1-88.8)</td>
</tr>
<tr>
<td></td>
<td>Mid (10-11)</td>
<td>19.1 (17.7-20.5)</td>
<td>16.9 (15.6-18.2)</td>
<td>2.2 (1.7-2.7)</td>
<td>88.4 (85.9-90.9)</td>
</tr>
<tr>
<td></td>
<td>High (12+)</td>
<td>22.8 (21.1-24.6)</td>
<td>20.7 (19.1-22.3)</td>
<td>2.1 (1.6-2.6)</td>
<td>90.7 (88.7-92.7)</td>
</tr>
<tr>
<td>USA</td>
<td>Low (0-11)</td>
<td>15.2 (14.8-15.6)</td>
<td>11.5 (11.2-11.9)</td>
<td>3.7 (3.4-3.9)</td>
<td>75.8 (74.3-77.3)</td>
</tr>
<tr>
<td></td>
<td>Mid (12)</td>
<td>16.4 (15.8-17.0)</td>
<td>13.3 (12.8-13.8)</td>
<td>3.1 (2.9-3.3)</td>
<td>81.2 (80.1-82.4)</td>
</tr>
<tr>
<td></td>
<td>High (13+)</td>
<td>18.3 (17.7-18.9)</td>
<td>15.4 (14.8-15.9)</td>
<td>3.0 (2.8-3.2)</td>
<td>83.8 (82.8-84.7)</td>
</tr>
</tbody>
</table>
Results – Women at 65

<table>
<thead>
<tr>
<th></th>
<th>Educ</th>
<th>TLE</th>
<th>ADL</th>
<th>FL</th>
<th>Ailments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>HLE</td>
<td>ULE % (hle/tle)</td>
<td>HLE</td>
</tr>
<tr>
<td>Japan</td>
<td>Low (0-9)</td>
<td>22.6</td>
<td>18.6</td>
<td>4.0</td>
<td>82.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(21.8-23.3)</td>
<td>(18.0-19.3)</td>
<td>(3.6-4.3)</td>
</tr>
<tr>
<td></td>
<td>Mid (10-11)</td>
<td>24.0</td>
<td>20.6</td>
<td>3.4</td>
<td>85.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(22.7-25.3)</td>
<td>(19.5-21.6)</td>
<td>(2.8-4.0)</td>
</tr>
<tr>
<td></td>
<td>High (12+)</td>
<td>26.4</td>
<td>22.0</td>
<td>4.4</td>
<td>83.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(23.4-29.3)</td>
<td>(20.0-23.9)</td>
<td>(2.8-6.0)</td>
</tr>
<tr>
<td>USA</td>
<td>Low (0-11)</td>
<td>18.1</td>
<td>12.0</td>
<td>6.1</td>
<td>66.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(17.7-18.5)</td>
<td>(11.6-12.3)</td>
<td>(5.7-6.5)</td>
</tr>
<tr>
<td></td>
<td>Mid (12)</td>
<td>19.9</td>
<td>14.9</td>
<td>5.0</td>
<td>74.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(19.5-20.3)</td>
<td>(14.5-15.2)</td>
<td>(4.8-5.3)</td>
</tr>
<tr>
<td></td>
<td>High (13+)</td>
<td>21.0</td>
<td>16.0</td>
<td>4.9</td>
<td>76.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(20.4-21.5)</td>
<td>(15.6-16.4)</td>
<td>(4.6-5.2)</td>
</tr>
</tbody>
</table>
Summary

• Education coefficients are similar for both Japan and USA populations
 – It would be very interesting to compare how education can access health related resources and translate them to health and mortality outcomes in Japan and USA.

• Older Japanese have superior mortality and health profiles
 – Older Japanese in the lowest education group have similar(better) TLE to older Americans in the highest education group.
 – Older Japanese in the lowest education group even have better HLE, ULE, %(HLE/TLE) profiles than those of older Americans in terms of ADL, functional limitation and major chronic conditions.
Are There Education Differentials in Disability and Mortality Transitions and Active Life Expectancy Among Japanese Older Adults? Findings From a 10-Year Prospective Cohort Study

Vanessa Yong and Yasuhiko Saito
Previous Research

• Mainly in Western countries
 – Consistent evidence for a strong association between education and health and mortality
 – Better educated people have:
 • better health; fewer disabilities
 • less likely to transit to worse health; more likely to recover
 • longer lives; more years of active life
 – Regardless of data sets, health measures, analytical methods used; time periods, age groups studied
Few Studies on Asia

• Unclear or mixed findings
 – Japan (Liu et al. 1995)
 – Taiwan (Zimmer et al. 1998)
 – China (Gu & Zeng 2004; Liang et al. 2001)
 – Indonesia (Hidajat et al. 2006; Kaneda & Zimmer 2007)
 – the Philippines (Cruz et al. 2007)

• Mostly did not compute ALE by educational levels
Asian Studies

<table>
<thead>
<tr>
<th>Educational effects on transition from:</th>
<th>Active-Inactive</th>
<th>Active-Dead</th>
<th>Inactive-Active</th>
<th>Inactive-Dead</th>
</tr>
</thead>
<tbody>
<tr>
<td>Japan</td>
<td>*</td>
<td>*</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>Taiwan</td>
<td>*</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>China</td>
<td>ns</td>
<td>ns</td>
<td>*/ns</td>
<td>ns</td>
</tr>
<tr>
<td>Indonesia</td>
<td>*/ns</td>
<td>*/ns</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>Philippines</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
</tr>
</tbody>
</table>

* significantly different
ns not significantly different
Aims of Study

• To examine the effects of education on disability and mortality transitions; and

• To compute active life expectancy by education for older Japanese men and women
Some Causal Pathways

• Behavioral-related Factors
 – Smoking, dietary habits, physical activities, knowledge of and access to health information

• Material-related Factors
 – Housing conditions, employment status, occupation, income, access to health care

• Life course effects; cohort effects
What is the effect of education on these health transitions?
Data

• Nihon University Japanese Longitudinal Study of Aging (NUJLSOA)
• Nationally representative sample of age 65+ in 1999
• Oversampled for age 75+
Data (cont.)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample size*</td>
<td>4997</td>
<td>3992</td>
<td>3418</td>
<td>2520</td>
<td>1861</td>
</tr>
<tr>
<td>Deaths</td>
<td>--</td>
<td>327</td>
<td>370</td>
<td>450</td>
<td>287</td>
</tr>
<tr>
<td>Response rate</td>
<td>74.6%</td>
<td>86.4%</td>
<td>82.1%</td>
<td>82.3%</td>
<td>85.2%</td>
</tr>
</tbody>
</table>

* For panel data only. Refreshed samples in 2001 and 2003 were omitted from the analyses. About 10% at each wave is by proxy-interviews with family members.

**Response rate includes deaths and some of those who didn’t answer previous interviews.
Data (cont.)

• Sample size for analyses (n=4,968)
 - Men= 2,107 - Women= 2,861

• Excluded:
 – Missing education variable (24 cases)
 – Missing initial functioning state (5 cases)

• Date of death (DOD) were obtained from family members and municipal records

• Missing DOD were coded as at mid-point of the survey interval (40 cases)
Health Measure

- **Inactive**: difficulty performing at least one of 7 ADLs or 7 IADLs

- **Active**: otherwise

 - 7 ADLs: bathing, dressing, eating, getting in/out of bed, walking, going outside, toileting

 - 7 IADLs: preparing for own meal, shopping, managing money, making phone calls, doing light housework, using transportation, taking medication
Education Measure

• Dichotomized by level of education based on observed distribution
 – Less than High School (≤ 9 years of schooling) *
 – High School and above (10+ years of schooling)

* less than 1% had < 6 years of schooling
<table>
<thead>
<tr>
<th></th>
<th>Less than HS</th>
<th>HS and above</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Men</td>
<td>1325 (60.2%)</td>
<td>782 (39.8%)</td>
<td>2107 (44.0%)</td>
</tr>
<tr>
<td>Women</td>
<td>1966 (65.5%)</td>
<td>895 (34.5%)</td>
<td>2861 (56.0%)</td>
</tr>
<tr>
<td>Total</td>
<td>3291 (63.2%)</td>
<td>1677 (36.8%)</td>
<td>4968 (100.0%)</td>
</tr>
</tbody>
</table>

Proportions shown are for the weighted sample
Method

• Multi-state life table (MSLT) method by sex
 – Population-based and Status-based estimates by educational level

• IMaCh used to obtain transition probabilities and compute active life expectancies
 – Annual probabilities were estimated (stepm=12)
RESULTS
Distribution of health transitions

<table>
<thead>
<tr>
<th>Initial state</th>
<th>End state</th>
<th>Active</th>
<th>Inactive</th>
<th>Dead</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Less than high school</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active</td>
<td></td>
<td>4751</td>
<td>1011</td>
<td>391</td>
<td>6153</td>
</tr>
<tr>
<td>Inactive</td>
<td></td>
<td>415</td>
<td>1415</td>
<td>652</td>
<td>2482</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>5166</td>
<td>2426</td>
<td>1043</td>
<td>8635</td>
</tr>
<tr>
<td></td>
<td>High school and above</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active</td>
<td></td>
<td>3125</td>
<td>390</td>
<td>181</td>
<td>3696</td>
</tr>
<tr>
<td>Inactive</td>
<td></td>
<td>164</td>
<td>452</td>
<td>195</td>
<td>811</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>3289</td>
<td>842</td>
<td>376</td>
<td>4507</td>
</tr>
</tbody>
</table>
Active to Inactive (worsening health)

Men

Women

Probabilities

Less educated

less educated (95% CI, lower)

more educated (95% CI, lower)

More educated

less educated (95% CI, upper)

more educated (95% CI, upper)
Active to Dead (mortality)

Men

Women

Probabilities

- Less educated
- More educated
- 95% CI, lower
- 95% CI, upper
Inactive to Active (improving health)

Probabilities

Men

Women

Less educated

less educated (95% CI, lower)

less educated (95% CI, upper)

More educated

more educated (95% CI, lower)

more educated (95% CI, upper)
Inactive to Dead (mortality)

Men

Women

Probabilities

- Less educated
- More educated
- less educated (95% CI, lower)
- more educated (95% CI, lower)
- less educated (95% CI, upper)
- more educated (95% CI, upper)
Population-based estimates

<table>
<thead>
<tr>
<th>Age</th>
<th>TLE</th>
<th>95% CI</th>
<th>ALE</th>
<th>95% CI</th>
<th>IALE</th>
<th>95% CI</th>
<th>ALE/TLE(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Men</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>less than high school</td>
<td>65</td>
<td>18.4</td>
<td>(17.6-19.2)</td>
<td>14.7</td>
<td>(14.0-15.4)</td>
<td>3.7</td>
<td>(3.3-4.1)</td>
</tr>
<tr>
<td></td>
<td>85</td>
<td>5.9</td>
<td>(5.3-6.4)</td>
<td>2.9</td>
<td>(2.5-3.3)</td>
<td>3.0</td>
<td>(2.5-3.4)</td>
</tr>
<tr>
<td>high school & above</td>
<td>65</td>
<td>20.5</td>
<td>(19.4-21.5)</td>
<td>17.3</td>
<td>(16.3-18.2)</td>
<td>3.2</td>
<td>(2.7-3.6)</td>
</tr>
<tr>
<td></td>
<td>85</td>
<td>6.6</td>
<td>(5.9-7.4)</td>
<td>4.1</td>
<td>(3.5-4.8)</td>
<td>2.5</td>
<td>(2.0-3.0)</td>
</tr>
<tr>
<td>Women</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>less than high school</td>
<td>65</td>
<td>22.3</td>
<td>(21.6-23.1)</td>
<td>15.9</td>
<td>(15.3-16.5)</td>
<td>6.4</td>
<td>(5.9-6.9)</td>
</tr>
<tr>
<td></td>
<td>85</td>
<td>7.4</td>
<td>(6.8-8.0)</td>
<td>2.4</td>
<td>(2.1-2.7)</td>
<td>5.0</td>
<td>(4.5-5.5)</td>
</tr>
<tr>
<td>high school & above</td>
<td>65</td>
<td>24.5</td>
<td>(23.2-25.8)</td>
<td>18.4</td>
<td>(17.6-19.3)</td>
<td>6.1</td>
<td>(5.1-7.0)</td>
</tr>
<tr>
<td></td>
<td>85</td>
<td>9.1</td>
<td>(8.0-10.1)</td>
<td>3.7</td>
<td>(3.2-4.3)</td>
<td>5.3</td>
<td>(4.4-6.3)</td>
</tr>
</tbody>
</table>

Totals may not add up exactly due to rounding
Status-based estimates: Active at age 65

<table>
<thead>
<tr>
<th></th>
<th>TLE</th>
<th>95% CI</th>
<th>ALE</th>
<th>95% CI</th>
<th>IALE</th>
<th>95% CI</th>
<th>ALE/TLE(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Men</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< HS</td>
<td>18.5</td>
<td>(17.8-19.3)</td>
<td>15.0</td>
<td>(14.3-15.6)</td>
<td>3.6</td>
<td>(3.2-4.0)</td>
<td>80.8</td>
</tr>
<tr>
<td>HS+</td>
<td>20.6</td>
<td>(19.5-21.6)</td>
<td>17.5</td>
<td>(16.6-18.4)</td>
<td>3.1</td>
<td>(2.6-3.6)</td>
<td>85.0</td>
</tr>
<tr>
<td>Women</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< HS</td>
<td>22.4</td>
<td>(21.6-23.1)</td>
<td>16.1</td>
<td>(15.5-16.6)</td>
<td>6.3</td>
<td>(5.8-6.8)</td>
<td>71.7</td>
</tr>
<tr>
<td>HS+</td>
<td>24.5</td>
<td>(23.2-25.8)</td>
<td>18.5</td>
<td>(17.7-19.4)</td>
<td>6.0</td>
<td>(5.1-6.9)</td>
<td>75.6</td>
</tr>
</tbody>
</table>

Totals may not add up exactly due to rounding
Status-based estimates: Inactive at age 65

<table>
<thead>
<tr>
<th></th>
<th>TLE</th>
<th>95% CI</th>
<th>ALE</th>
<th>95% CI</th>
<th>IALE</th>
<th>95% CI</th>
<th>ALE/TLE(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Men</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< HS</td>
<td>16.0 (14.7-17.3)</td>
<td>9.7 (8.2-11.1)</td>
<td>6.3 (5.5-7.1)</td>
<td>60.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HS+</td>
<td>17.1 (15.3-18.9)</td>
<td>11.6 (9.6-13.5)</td>
<td>5.5 (4.7-6.4)</td>
<td>67.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Women</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< HS</td>
<td>20.7 (19.7-21.7)</td>
<td>11.8 (10.7-12.8)</td>
<td>8.9 (8.2-9.7)</td>
<td>56.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HS+</td>
<td>23.1 (21.6-24.6)</td>
<td>14.3 (12.9-15.7)</td>
<td>8.8 (7.6-10.0)</td>
<td>61.9</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Totals may not add up exactly due to rounding
Comparison of status-based estimates

Active at age 65

<table>
<thead>
<tr>
<th><HS</th>
<th>HS+</th>
<th><HS</th>
<th>HS+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Men</td>
<td>15.0</td>
<td>17.5</td>
<td>16.1</td>
</tr>
<tr>
<td>Women</td>
<td>3.6</td>
<td>3.1</td>
<td>6.3</td>
</tr>
</tbody>
</table>

Inactive at age 65

<table>
<thead>
<tr>
<th><HS</th>
<th>HS+</th>
<th><HS</th>
<th>HS+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Men</td>
<td>9.7</td>
<td>11.6</td>
<td>11.8</td>
</tr>
<tr>
<td>Women</td>
<td>6.3</td>
<td>5.5</td>
<td>8.9</td>
</tr>
</tbody>
</table>
Summary: Transition Probabilities

<table>
<thead>
<tr>
<th>Education Differentials in Health and Mortality Transitions</th>
<th>Men</th>
<th>Women</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active to Inactive (worsened health)</td>
<td>*/ns</td>
<td>*</td>
</tr>
<tr>
<td>Active to Dead (transit to death)</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>Inactive to Active (improved health)</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>Inactive to Dead (transit to death)</td>
<td>ns</td>
<td>ns</td>
</tr>
</tbody>
</table>

* p<0.05 ns: not significant
Summary: ALE at age 65

<table>
<thead>
<tr>
<th>Education differentials in:</th>
<th>Men</th>
<th>Women</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population-based</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TLE</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>ALE</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>IALE</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>Status-based (initial active state)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TLE</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>ALE</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>IALE</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>Status-based (initial inactive state)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TLE</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>ALE</td>
<td>ns</td>
<td>*</td>
</tr>
<tr>
<td>IALE</td>
<td>ns</td>
<td>ns</td>
</tr>
</tbody>
</table>
Discussion

• Generally, little effect of education
• Possible reasons:
 – Universal access to health care in Japan
 – High health literacy and concern among Japanese regardless of educational levels
 – Annual health exams required by all ...
 – Negligible migrant population; mostly homogeneous
 – Generally, lower inequality among this study population; emphasize on egalitarianism and cooperation
 – Diet and nutritional intake less differentiated
Limitations/Areas for further study

• unable to adjust for clustering of observations
• Attrition
• Missing values
• Definition of health
• Introduction of other covariates
Gender Differentials in Disability and Mortality Transitions: The Case of Older Adults in Japan

Angelique Chan, PhD¹, Zachary Zimmer, PhD², and Yasuhiko Saito, PhD³
Introduction

* This paper focuses on gender differentials in ‘disability-free’ or ‘active’ life expectancy among older Japanese

* Active life expectancy divides total life expectancy into states of health, e.g. with or without disability

* Active life expectancy estimates derived from multi-state life tables

* Probabilities for the multi-state life tables derived from hazard rate parameters describing a set of transitions
Data

- * Nihon University Japanese Longitudinal Study of Aging
- * Nationally representative sample aged 65+
- * Data collected in 1999, 2001 and 2003
Data

Episodic data is stacked

Baseline 1999 → Follow-up 2001

Baseline 2001 → Follow-up 2003

Total N ~ 8,400
Measures

A person is considered ‘disabled’ if they cannot perform at least one of the following ADLs independently:

1. Bathing
2. Dressing
3. Eating
4. Rising
5. Walking
6. Leaving house
7. Using toilet

Baseline
- Disabled
- Not-disabled

Follow-up
- Disabled
- Not-disabled
- Died
LE, DFLE and DLE

Factors considered in the study are: age, sex education (high/low) occupation (while/others), income (high/low), life threatening diseases (yes/no), debilitating diseases (yes/no)

Source: Chan, Zimmer and Saito, 2010, *Journal of Aging and Health*

<table>
<thead>
<tr>
<th>Scenarios</th>
<th>Age</th>
<th>Years without disability</th>
<th>Years with disability</th>
<th>Total life expectancy</th>
<th>Years without disability</th>
<th>Years with disability</th>
<th>Total life expectancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium level</td>
<td>65</td>
<td>16.76</td>
<td>1.69</td>
<td>18.45</td>
<td>19.20</td>
<td>3.20</td>
<td>22.40</td>
</tr>
<tr>
<td>Top level</td>
<td>65</td>
<td>24.28</td>
<td>1.45</td>
<td>25.73</td>
<td>29.89</td>
<td>3.01</td>
<td>32.89</td>
</tr>
<tr>
<td>Bottom level</td>
<td>65</td>
<td>11.46</td>
<td>1.80</td>
<td>13.26</td>
<td>12.99</td>
<td>3.29</td>
<td>16.29</td>
</tr>
</tbody>
</table>